

Gut Microbiota The Nutritional Connection

Role of nutrients in gut health

Dietary elements influencing gut health and microbiota are:

metabolites1

Role

Dietary fiber

- A key nutrient for maintaining the diversity of gut microbiota¹
 Maintains the integrity of the music barrier¹
- ▶ Maintains the integrity of the mucus barrier¹

Dietary proteins and amino acids

▶ Important for intestinal mucosal homeostasis¹

▶ Regulate the amounts and profile of bacterial

- differentiation²
 ▶ Affect the gut microbiome by impacting the

Crucial for mucin production, cell growth, and

- intestinal mucosal barrier²
- Vitamin D

Retinoids

- ► Critical role in the regulation of gut microbiota¹
- Provides protection against IBD¹

Vitamin E

- ▶ Promotes plasma membrane repair²

▶ Reduces the pathogenicity of Citrobacter²

Vitamin C

- In vitro antimicrobial effects against bacteria, fungi, and viruses²
 Madulates intentinal priore bial communities²
- ▶ Modulates intestinal microbial communities²

Vitamin B2

- ▶ Reduces luminal ROS²
 ▶ Creates an environment
- Creates an environment that positively affects the gut microbiome composition²

Polyphenols

- Increase intestinal barrier protectors (Bifidobacterium spp. and Lactobacillus)³
 Increase butyrate-producing bacteria
- (Faecalibacterium prausnitzii and Roseburia)³

 ▶ Decrease lipopolysaccharide producers
 - (Escherichia coli and Enterobacter cloacae)³

Selenium

Promotes the growth of beneficial bacteria²

with negative influence

Role

High-fat diet

Reduces diversity of the gut microbiota¹

Artificial sweeteners

- Overgrowth of Proteobacteria and Escherichia coli³
 Significantly lower Bacteroides, Clostridia, and
- total aerobic bacteria³

Emulsifiers

Reduce microbial diversity (Bacteroidales and Verrucomicrobia)³
 Increase inflammation-promoting

How does malnutrition alter gut microbiota?²

Bilophila wadsworthia Clostridioides innocuum

Bacteroidetes spp.

Enterobacter spp.
Streptococcus spp.
Escherichia spp.

MALNUTRITION

Bifidobacterium spp.

Ruminococcus spp.

Faecalibacterium prausnitzii

Beneficial bacteria

Eubacterium spp.

Lactobacillus mucosae

Key takeaways

- Food components and endogenous metabolites directly impact the gut microbiota and gut epithelial barrier, thus playing a pivotal role in gut health.
- Childhood malnutrition is reported to alter the gut microbiota significantly.